Package: degreenet 1.3-6

degreenet: Models for Skewed Count Distributions Relevant to Networks

Likelihood-based inference for skewed count distributions, typically of degrees used in network modeling. "degreenet" is a part of the "statnet" suite of packages for network analysis. See Jones and Handcock <doi:10.1098/rspb.2003.2369>.

Authors:Mark S. Handcock [aut, cre, cph]

degreenet_1.3-6.tar.gz
degreenet_1.3-6.zip(r-4.5)degreenet_1.3-6.zip(r-4.4)degreenet_1.3-6.zip(r-4.3)
degreenet_1.3-6.tgz(r-4.4-x86_64)degreenet_1.3-6.tgz(r-4.4-arm64)degreenet_1.3-6.tgz(r-4.3-x86_64)degreenet_1.3-6.tgz(r-4.3-arm64)
degreenet_1.3-6.tar.gz(r-4.5-noble)degreenet_1.3-6.tar.gz(r-4.4-noble)
degreenet_1.3-6.tgz(r-4.4-emscripten)degreenet_1.3-6.tgz(r-4.3-emscripten)
degreenet.pdf |degreenet.html
degreenet/json (API)

# Install 'degreenet' in R:
install.packages('degreenet', repos = c('https://handcock.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • swedenf - Number of sex partners in the last 12 months for men and women in Sweden
  • swedenm - Number of sex partners in the last 12 months for men and women in Sweden

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.05 score 1 stars 28 scripts 737 downloads 2 mentions 226 exports 18 dependencies

Last updated 2 months agofrom:7d4426d995. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-win-x86_64OKOct 26 2024
R-4.5-linux-x86_64OKOct 26 2024
R-4.4-win-x86_64OKOct 26 2024
R-4.4-mac-x86_64OKOct 26 2024
R-4.4-mac-aarch64OKOct 26 2024
R-4.3-win-x86_64OKOct 26 2024
R-4.3-mac-x86_64OKOct 26 2024
R-4.3-mac-aarch64OKOct 26 2024

Exports:acmpmleadpmleadpmlefadqemleageomleaghdimleagpmleagwmleagy0mleagymleamleanb0mleanbmleanbwmleanby0mleanbymleapemleaplnmleapoimleasgeomleawarmleayulemleayulemlefbootstrapdpbootstrapdpconcbootstrapgdpbootstrapgdpconcbootstrapgnbconcbootstrapgnbyconcbootstrapgplnconcbootstrapgwarbootstrapgwarconcbootstrapgyulebootstrapgyuleconcbootstrapnbbootstrapnbconcbootstrapnbyconcbootstrappebootstrappeconcbootstrapplnbootstrapplnconcbootstraprdpbootstraprgwbootstraprplnbootstraprwarbootstrapryulebootstrapwarbootstrapwarconcbootstrapyulebootstrapyuleconcbootstrapzipfbsdpbsnbbsplnbswarbsyulecmp.mutonaturalcmp.naturaltomudcmp_mudcmp.naturalddpddpeddqedgeodpdghdidgwardgyuledgyule0dgyulebdnbdnbwardnbyulednbyule0dnbyulebdpedplndpln.refineddpln1dtpdwardyulegauss.hermitegcmpmlegdpmleggeodpmleggeomleggymlegllcmpgllcmp.narrowgllcmpallgnbmlegnbymlegplnmlegpoimlegwarmlegyulemlehermiteis.psdldcmp.naturallddplddqeldgeodpldghdildgwarldgyuleldgyule0ldnbwarldnbyuleldnbyule0ldplnldpln1ldtpldwarldyulellcmpllcmpalllldplldp.goodlldpalllldqelldqeallllgdpllgdpallllgeollgeoallllggeollggeoallllggeodpllggyllggyallllghdillghdiallllgnbllgnballllgnbyllgnbyallllgpllgp.goodllgpallllgplnllgplnallllgpoillgpoiallllgwllgwallllgwarllgwarallllgyllgy0llgy0allllgyallllgyulellgyuleallllnbllnb0llnb0allllnballllnbwllnbwallllnbyllnby0llnby0allllnbyallllnbzerollnbzeroallllpellpeallllplnllplnallllpoillpoiallllrdpllrdpallllrgwllrgwallllrgwfllrgwfallllrgwpllrgwpallllrgyllrgyallllrnbllrnballllrnbwllrnbwallllrplnllrplnallllrwarllrwarallllryulellryuleallllsgeollsgeoallllwarllwarallllyulellyuleallmandsnbmeanplotcdfpolylogrcmp.murdpmlereedmolloyreportingrgwfmlergwmlergwpmlergymlermultinomialrmultz2rnbmlernbwmlerplnmlerwarmleryuleryulemleryulemlefsimcmpsimdpsimdqesimnbsimplnsimwarsimyulezeta

Dependencies:clicodacpp11fansiglueigraphlatticelifecyclemagrittrMatrixnetworkpillarpkgconfigrlangstatnet.commontibbleutf8vctrs

Readme and manuals

Help Manual

Help pageTopics
Models for Skewed Count Distributions Relevant to Networksdegreenet-package degreenet
Conway Maxwell Poisson Modeling of Discrete Dataacmpmle cmp.mutonatural cmp.naturaltomu dcmp dcmp.natural dcmp_mu ldcmp.natural llcmp llcmpall
Discrete version of q-Exponential Modeling of Discrete Dataadqemle ddqe lddqe lldqe lldqeall simdqe
Poisson Lognormal Modeling of Discrete Dataaplnmle dpln ldpln llplnall
Waring Modeling of Discrete Dataawarmle dwar ldwar llwarall
Yule Distribution Modeling of Discrete Dataayulemle dyule ldyule
Calculate Bootstrap Estimates and Confidence Intervals for the Discrete Pareto Distributionbootstrapdp bsdp
Calculate Bootstrap Estimates and Confidence Intervals for the Negative Binomial Distributionbootstrapnb bsnb
Calculate Bootstrap Estimates and Confidence Intervals for the Poisson Lognormal Distributionbootstrappln bootstrapplnconc bspln
Calculate Bootstrap Estimates and Confidence Intervals for the Waring Distributionbootstrapwar bswar
Calculate Bootstrap Estimates and Confidence Intervals for the Yule Distributionbootstrapyule bsyule
Models for Count Distributionsgwarmle gyulemle
Calculate the Conditional log-likelihood for Count Distributionsllgdp llgpoi llgwar llgyule
Calculate the log-likelihood for Count Distributionsllgdpall llgnball llgnbwall llgpoiall llgwarall llgyuleall
Calculate the Conditional log-likelihood for the Poisson Lognormal Distributionsllpln
Calculate the Conditional log-likelihood for Count Distributionslldp lldp.good llgeo llgp llgp.good llgw llgy llgy0 llnb llnb0 llnbw llnby llnby0 llnbzero llpe llpoi llsgeo llwar llyule
Calculate the log-likelihood for Count Distributionslldpall llgeoall llgpall llgwall llgy0all llgyall llnb0all llnball llnbwall llnby0all llnbyall llnbzeroall llpeall llpoiall llsgeoall llyuleall
Generate a undirected network with a given sequence of degreesreedmolloy
Rounded Poisson Lognormal Modeling of Discrete Databootstraprpln drpln ldrpln llrpln llrplnall rplnmle
Generate a (non-random) network from a Yule Distributionryule
Simulate from a Conway Maxwell Poisson Distributionsimcmp
Simulate from a Discrete Pareto Distributionsimdp
Simulate from a Negative Binomial Distributionsimnb
Simulate from a Poisson Lognormal Distributionsimpln
Simulate from a Waring Distributionsimwar
Simulate from a Yule Distributionsimyule
Number of sex partners in the last 12 months for men and women in Swedensweden swedenf swedenm